# Synthesis of 4,5,6,7-tetrahydrobenzoxazol-2-ones by a highly regioselective Diels-Alder cycloaddition of exo-oxazolidin-2-one dienes with chalcones 

Salvador Mastachi-Loza ${ }^{\text {a }}$, Tania I. Ramírez-Candelero ${ }^{\text {a }}$, Asenet Tapia-Bustamante ${ }^{\text {a }}$, Carlos González-Romero ${ }^{\text {a }}$, Eduardo Díaz-Torres ${ }^{\text {a }}$, Joaquín Tamariz ${ }^{\text {b }}$, Rubén A. Toscano ${ }^{\text {c }}$, Aydeé Fuentes-Benítes ${ }^{\text {a,* }}$<br>${ }^{a}$ Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan y Colón S/N, 50000 Toluca, Mexico<br>${ }^{\text {b }}$ Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala S/N, 11340 CDMX, Mexico<br>${ }^{\mathrm{c}}$ Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, C.U. Coyoacán, 04510 CDMX, Mexico

## A R T I C L E I N F O

## Article history:

Received 10 February 2019
Revised 10 April 2019
Accepted 15 April 2019
Available online 16 April 2019

## Keywords:

Diels-Alder reaction
Chalcone
Cyclization
Tetrahydrobenzoxazol-2-one
Benzoxazolone


#### Abstract

The synthesis of novel of 4,5,6,7-tetrahydrobenzoxazol-2-ones is herein reported. They were obtained in moderate to good yields by a highly regio- and stereoselective Diels-Alder cycloaddition of $N$-substituted exo-oxazolidin-2-one dienes with chalcones or bis-chalcones as dienophiles.


© 2019 Elsevier Ltd. All rights reserved.

## Introduction

Benzoxazolones (BOAs) are biological important molecules isolated from many plants. The relevance of this heterocyclic framework for medicinal chemistry is evidenced by the descriptions over the last 30 years [1] of its extensive bioactivity in natural and synthetic derivatives. Considered a privileged scaffold, BOAs display bioisosterism and have pharmacologial properties similar to a variety of molecules (e.g., phenylurethanes, cathecol derivatives and coumarins) with which they share structural resemblance [2]. Some of these properties are associated with the changes in substituents at the $\mathrm{C}_{5}$ and $\mathrm{C}_{6}$ positions of the skeleton [3,4]. Biological studies have demostrated that BOAs exhibit antibacterial [5], antifungal [6], analgesic [7], anti-inflammatory [8], anticonvulsant [9], dopaminergic [10], and reverse transcriptase inhibition activity [11].

These heterocycles are usually synthesized by a condensation reaction of o-aminophenols with urea (as the classic procedure), or less commonly with $1,1^{\prime}$-carbonyldiimidazole [12], ethyl cloro-

[^0]formate or phosgene [13]. Other methods involve Beckmann [14] or Lossen rearrangements [12] or a reaction between N -alkyl- N arylhydroxylamine and trichloroacethyl chloride [15]. For instance, N -substituted benzoxazol-2-ones $\mathbf{1}$ can be prepared from the aromatization of 4,5,6,7-tetrahydrobenzoxazolones 2, which are easily generated through a Diels-Alder addition between dienes $\mathbf{3}$ and diverse dienophiles 4 (Scheme 1) [16-18].

On the other hand, chalcones are a group of compounds of great interest because of their wide scope of biological activity [19]. They are characterized by a scaffold formed by two benzene rings attached to a 2-propen-1-one chain moiety. Trans isomer 5 is the most common configuration found in nature [20,21]. This family of compounds has structural diversity, exemplified by bis-chalcones 1,5-diarylpenta-1,4-dien-3-ones derivatives $\mathbf{6}$ that share several biological properties with chalcones 5 (Fig. 1).

Due to the conjugated double bond to a carbonyl group and to a delocalized $\pi$-electron system of both benzene rings, chalcones exhibit low redox potential that allows them to undergo electron transfer reactions [22]. Consequently their diverse applications include their involvement in Diels-Alder reactions either as dienophiles [23-25], or as dienes [26] (the latter for hetero-Diels-Alder cycloadditions).


Scheme 1. Retrosynthesis for $N$-substituted benzoxazol-2-ones.


5


6

Fig. 1. Core structure of chalcones 5 and bis-chalcones 6.

We herein present the synthesis of novel 5,6-substituted 4,5,6,7-tetrahydrobenzoxazol-2-ones 8, 9, 11 and 12 obtained by a Diels-Alder cycloaddition of N -substituted exo-oxazolidin-2-one dienes 3a-c with chalcones $\mathbf{5 a - g}$ and bis-chalcones 6a-f (Scheme 2).

## Results and discussion

Dienes 3a-c were synthesized by following the reported condensation reaction [18,27], in this case with 2,3-pentanedione (10) and the corresponding arylisocyanate, in the presence of triethylamine as the base.

The preparation of the chalcone derivatives $\mathbf{5 a - g}$ and bis-chalcones 6a-f was carried out with the Claisen-Schmidt condensation [28-31]. By adding equimolar amounts of the corresponding ketone and aldehyde to a $10 \%$ aqueous solution of NaOH in ethanol as the solvent, the desired products were provided in good yields. Chalcones $\mathbf{5 a - g}$ were afforded by the condensation reaction between acetone and the series of benzaldehydes 7, and bis-chalcones $\mathbf{6 a - g}$ by the reaction of acetophenone derivatives with benzaldehydes 7.

Once having dienes and dienophiles on hand, three methods for evaluating Diels-Alder cycloaddition were tested by using equimolar amounts of compounds $\mathbf{3 a}$ and $\mathbf{6 a}$ (Table 1). Method A consisted of refluxing the reaction mixture in a water/methanol solution (entry 1), while method B and C involved heating at $180^{\circ} \mathrm{C}$ with


Scheme 2. Synthesis of tetrahydrobenzoxazol-2-ones. Reagents and conditions: i) acetone, NaOH aq. $10 \%$, EtOH , rt; ii) $\mathrm{R}^{1}$ - NCO , triethylamine, $\mathrm{Li}_{2} \mathrm{CO}_{3}$, toluene; iii) $\mathrm{R}^{3}$ $\mathrm{COCH}_{3}, \mathrm{NaOH}$ aq. $10 \%$, EtOH, rt; iv) MW, $180^{\circ} \mathrm{C}$ or conventional heating $\left(180^{\circ} \mathrm{C}\right)$.

Table 1
Methods for the Diels-Alder cycloaddition of 3a with $\mathbf{6 a}$.

${ }^{\text {a }}$ With 3a ( 0.85 mmol ) and 6a ( 0.85 mmol ).
${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\text {c }}$ For the diastereoisomeric mixture.
${ }^{\mathrm{d}}$ Other mixtures were tested with no better results.
different energy sources (entries 2-3). The latter methods furnished higher yields and required shorter reaction times.

It is striking that in all reaction conditions employed, the cycloadditions proceeded with high regioselectivity, exclusively yielding the ortho isomers (relative to methyl and enone functional groups). However, the endo/exo stereoselectivity was lower, showing an inverse ratio when changing the polarity of the solvent. Thus, the endo isomer 9a was the major isomer and displayed a greater selectivity with a polar mixture of solvents (method A), while the exo isomer 8a was the main adduct (though in lower isomeric ratio) with toluene acting as the solvent.

Following the reaction conditions established in methods A-C, the series of 4,5,6,7-tetrahydrobenzoxazol-2-ones $\mathbf{8 / 9}$ was prepared by utilizing $N$-substituted exo-heterocyclic dienes 3a-c and bis-chalcones 6a-f (Table 2). A change in exo/endo selectivity was observed with ortho substituents in the aromatic ring at $C_{5}$, even when toluene was used as the solvent (adducts $\mathbf{8} / \mathbf{9 - i}, \mathbf{j}$ and $\mathbf{k}$ ).

Elucidation of the relative configuration of compounds $8 / 9$ was achieved by $2 \mathrm{D}{ }^{1} \mathrm{H}$ NMR experiments (COSY and NOESY), assigning the signals for the $H_{4}-H_{7}$ protons in the cyclohexene moiety. In the case of $\mathbf{8 h}$ (Fig. 2a), for example, the relative configuration of the $C_{7}$ methyl group was ascertained through the measurement of the coupling constants of the $H_{6}$ proton, the signal of which ( 3.12 ppm ) is a large-sized doublet of doublet (dd, $J=11.2$, 9.5 Hz ). Hence, $H_{6}$ has axial-axial couplings with $H_{5}$ and $H_{7}$, meaning that the $C_{7}$ methyl, $C_{5}$ thiophenyl and $C_{6}$ thiophenylacryloyl groups adopt an equatorial conformation. This relative configuration was supported by a NOESY experiment, revealing cross peak/diagonal peak signals of $H_{7}$ with $H_{5}$ that indicate a spatial syn-axial relationship, leaving the $C_{5}$ thiophenyl and the $C_{7}$ methyl groups in a syn-equatorial relative configuration (Fig. 2b).

For the isomer $\mathbf{9 h}$, the signal of the $H_{6}$ proton ( 3.74 ppm ) is a $d d$ $(J=10.7,5.6 \mathrm{~Hz}$ ), suggesting an axial-axial relationship with proton $\mathrm{H}_{5}$ and axial-equatorial relationship with $H_{7}$. Therefore, the $C_{7}$ methyl group adopts an axial conformation. This was confirmed as the NOESY experiment shows cross peak/diagonal peak signals for a dipolar interaction of the $C_{7}$ methyl group with $H_{5}$, reflecting a spatial syn-axial relationship between them.

This structural assignment was further supported by an X-ray diffraction crystallographic analysis of the major diastereoisomer $\mathbf{9 i}$ (Fig. 3), in which the $C_{7}$ methyl group showed a syn relationship to the $C_{6}$ cinnamoyl and an anti relationship to the $C_{5}$ aryl groups.

All compounds in the $8 / 9$ series displayed similar chemical shifts and NMR patterns of multiplicity, as well as NOESY spatial relationships. For compound $\mathbf{9 k}$, however, the chemical shifts of

Table 2
Synthesized exo/endo tetrahydrobenzoxazol-2-ones $\mathbf{8}$ and $\mathbf{9}$.


| Adducts | Method | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Ratio 8/9 ${ }^{\text {a }}$ | Yield (\%) ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8b, 9b | C | phenyl | 4-methoxyphenyl | 50:50 | 85 |
| 8c, 9c | A | phenyl | phenyl | 35:65 | 28 |
| 8d, 9d | B | 4-methoxyphenyl | 4-chlorophenyl | 62:38 | 86 |
| 8e, 9e | B | 4-methoxyphenyl | 4-methoxyphenyl | 63:37 | 91 |
| 8f, 9f | B | 4-methoxyphenyl | phenyl | 59:41 | 67 |
| 8g, 9g | C | 2-thienyl | 4-methoxyphenyl | 50:50 | 86 |
| 8h, 9h | B | 2-thienyl | 4-chlorophenyl | 55:45 | 72 |
| 8i, 9i | B | 2-chorophenyl | phenyl | 38:62 | 95 |
| 8j, 9j | B | 2,3-dimethoxyphenyl | 4-methoxyphenyl | 15:85 | 91 |
| 8k, 9k | B | 2,6-dichlorophenyl | 4-methoxyphenyl | <1:99 | 72 |

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathrm{b}}$ For the diastereoisomeric mixture.
a)

8h


9h
b)



Fig. 2. a) Structures for compounds $\mathbf{8 h}$ and $\mathbf{9 h}$ b) NOESY correlations for compounds $\mathbf{8 h}$ and $\mathbf{9 h}$.


Fig. 3. ORTEP plot for $9 \mathbf{9}$.
protons $H_{5}(4.41 \mathrm{ppm})$ and $H_{6}(4.84 \mathrm{ppm})$ underwent a stronger deshielding effect than that observed for other compounds (ca. 3.50 and 3.70 ppm ). This behavior may be accounted for by a plau-
sible restricted rotation of the $C_{5}$ aryl ring, leaving the chlorine atoms close to those protons as suggested by ${ }^{1} \mathrm{H}$ NMR. In such a case, the paramagnetic anisotropic effect of the chlorine atoms attached at the $C_{19}$ and $C_{23}$ atoms would alter the magnetic environment of the protons at $C_{5}$ and $C_{6}$ (Fig. 4). As a consequence of the restricted rotation of the $C_{5}$ aryl ring, the aromatic protons $\mathrm{H}_{20}$ and $\mathrm{H}_{22}$ would become magnetically nonequivalent, as was indeed shown by their signals with a significant $\Delta \delta$ for $H_{20}$ ( $7.16 \mathrm{ppm}, \mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}$ ), $H_{22}(7.34 \mathrm{ppm}, \mathrm{dd}, J=8.1,1.0 \mathrm{~Hz}$ ) and $H_{21}(7.06 \mathrm{ppm}, \mathrm{t}, J=8.1 \mathrm{~Hz})$. This possibility is supported by the fact that the aromatic B ring protons $H_{14}$ and $H_{16}$ are magnetically equivalent ( $7.35 \mathrm{ppm}, \mathrm{d}, J=8.1 \mathrm{~Hz}$ ), as is $H_{15}(7.20 \mathrm{ppm}, \mathrm{t}$, $J=8.1 \mathrm{~Hz}$ ), indicating a $C_{11}-C_{12}$ free bond rotation.

Chalcones 5a-g were also evaluated as dienophiles in the DielsAlder reaction with diene $\mathbf{3 a}$ under the conditions of method B (Table 1, entry 3), to afford a series of tetrahydrobenzoxazol-2ones $\mathbf{1 1} / \mathbf{1 2}$ (Table 3). Interestingly, there was a preference of these compounds for the endo versus exo adduct, except with adducts $\mathbf{1 1} / \mathbf{1 2 c}$,d. The latter compounds have a 4 -methoxyphenyl group in $\mathrm{R}^{1}$ with endo/exo ratios close to $1: 1$, revealing no clear preference for either of the isomers. General endo preference could be explained by the change of the cinnamoyl group at $C_{6}$, present in compounds $\mathbf{8} / \mathbf{9}$, thus changing the steric repulsive effects and secondary orbital interactions between diene and dienophile in the transition state during the formation of compounds $\mathbf{1 1 / 1 2}$ [32].


Fig. 4. Compound 9k.

Table 3
Synthesized exo/endo tetrahydrobenzoxazol-2-ones 11/12.

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathrm{b}}$ For the diastereoisomeric mixture.


Fig. 5. ORTEP plot for 11a.

The reaction led to results analogous to those for $\mathbf{8} / \mathbf{9}$. The products were characterized by $2 \mathrm{D}{ }^{1} \mathrm{H}$ NMR analysis (COSY and NOESY) as a mixture of diastereoisomers $\mathbf{1 1} / \mathbf{1 2}$. The reaction was regioselective, leading only to ortho isomers (with the acyl group at $C_{6}$ ). The relative configuration of the adducts was established by examining the $H_{6}$ proton signal, which displayed coupling constants and multiplicity similar to those found with the same proton in $\mathbf{8 / 9}$. The NOESY experiment gave an analogous finding regarding the syn spatial interactions. The structure of the adducts was also confirmed by an X-ray diffraction crystallography analysis for the minor diastereoisomer 11a (Fig. 5).

## Conclusions

The synthesis is herein described, for the series of 5,6 -substituted 4,5,6,7-tetrahydrobenzoxazol-2-ones $\mathbf{8 / 9}$ and 11/12 via a highly regioselective Diels-Alder cycloaddition. The endo/exo stereoselectivity of compounds $\mathbf{8 / 9}$ was dependent on the solvent, polarity and substituents. An endo preference existed when using the solvent with the strongest polarity and an exo preference with the nonpolar solvent, except for the adducts bearing $C_{6}-2,4-$ dichlorophenyl, $C_{6}$-2-chlorophenyl or $C_{6}$-2,3-dimethoxyphenyl
substituents. On the other hand, compounds $\mathbf{1 1 / 1 2}$ showed endo preference with the nonpolar solvent. The adduct structures and relative configuration were established through NMR spectroscopic and X-ray diffraction analyses. Synthetic applications of these novel compounds are currently underway, and the results will be reported in due time.

## Acknowledgements

Financial support from UAEMéx (project No. 4512/2018/CI) and CONACyT (postgraduate scholarship grant No. 401195) is gratefully acknowledged. J.T. is thankful to the SIP/IPN (grant 20180198) and CONACyT (grant 178319) for financial support. The authors would like to thank Dr. Davir González-Calderón, M. en C. Nieves Zavala-Segovia, and Lizbeth Triana-Cruz (CCIQS UAEMéx-UNAM), Instituto de Química UNAM as well as Luis Velasco, Javier Pérez, Hector Rios, María I. Chavez, Beatriz Quiroz and Mario Alfredo Garcia Carrillo for technical assistance. J.T. is a fellow of the EDI-IPN and COFAA-IPN programs.

## Appendix A. Supplementary data

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail:deposit@ccdc.cam.ac.Uk). CCDC registry number for $\mathbf{8 i} / \mathbf{9 i}$ : 1033700 . CCDC registry number for 11a: 1882393. Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2019.04.027.

## References

[1] H. Aichaoui, F. Guenadil, C.N. Kapanda, D.M. Lambert, C.R. McCurdy, J.H. Poupaert, Med. Chem. Res. 18 (2008) 467-476.
[2] J. Poupaert, P. Carato, E. Colacino, Curr. Med. Chem. 12 (2005) 877-885.
[3] L. Tang, S.R. Ban, X.E. Feng, W.H. Lin, Q.S. Li, Chin. Chem. Lett. 21 (2010) 63-66.
[4] A. Friebe, V. Vilich, L. Hennig, M. Kluge, D. Sicker, Appl. Environ. Microbiol. 64 (1998) 2386-2391.
[5] Z. Soyer, B. Eraç, J. Pharmacol. Sci. 32 (2007) 167-171.
[6] Z.A. Kaplancikli, G. Turan-Zitouni, G. Revial, K. Guven, Arch. Pharm. Res. 27 (2004) 1081-1085.
[7] N. Gökhan, H. Erdoğan, N.T. Durlu, R. Demirdamar, Il Farm 54 (1999) 112-115.
[8] N. Gökhan-Kelekçi, M. Köksal, S. Ünüvar, G. Aktay, H. Erdoğan, J. Enzyme Inhib. Med. Chem. 24 (2009) 29-37.

9] H. Ucar, K. Van derpoorten, S. Cacciaguerra, S. Spampinato, J.P. Stables, P Depovere, M. Isa, B. Masereel, J. Delarge, J.H. Poupaert, J. Med. Chem. 41 (1998) 1138-1145.
[10] J. Weinstock, D.E. Gaitanopoulos, O.D. Stringer, R.G. Franz, J.P. Hieble, L.B. Kinter, W.A. Mann, K.E. Flaim, G. Gessner, J. Med. Chem. 30 (1987) 1166-1176,
[11] B.-L. Deng, M.D. Cullen, Z. Zhou, T.L. Hartman, R.W. Buckheit Jr., C. Pannecouque, E.D. Clercq, P.E. Fanwick, M. Cushman, Bioorg. Med. Chem. 14 (2006) 2366-2374.
[12] M.S. Gerova, S.R. Stateva, E.M. Radonova, R.B. Kalenderska, R.I. Rusew, R.P. Nikolova, C.D. Chanev, B.L. Shivachev, M.D. Apostolova, O.I. Petrov, Eur. J. Med. Chem. 120 (2016) 121-133.
[13] D. Piomelli, D. Pizzirani, A. Bach, R. Scarpelli, L. Melzig, M. Mor, United States, US20170182009A1, 2017.
[14] V. Kalcheva, K. Lozanova, D. Simov, P.B. Terent'ev, Chem. Heterocycl. Compd. 21 (1985) 985-987.
[15] R.N. Ram, V.K. Soni, J. Org. Chem. 78 (2013) 11935-11947.
[16] R. Bautista, P. Bernal, L. Montiel, F. Delgado, J. Tamariz, Synthesis 6 (2011) 929933.
[17] C. González-Romero, P. Bernal, F. Jiménez, M.C. Cruz, A. Fuentes-Benites, A. Benavides, R. Bautista, J. Tamariz, Pure. Appl. Chem. 79 (2007) 181-191.
[18] A.B. Mandal, A. Gómez, G. Trujillo, F. Méndez, H.A. Jiménez, M.J. Rosales, R. Martínez, F. Delgado, J. Tamariz, J. Org. Chem. 62 (1997) 4105-4115.
[19] Z. Nowakowska, J. Eur, Med. Chem. 42 (2007) 125-137.
[20] B. Srinivasan, T.E. Johnson, R. Lad, C. Xing, J. Med. Chem. 52 (2009) 7228-7235
[21] M. Bazzaro, R.K. Anchoori, M.K.R. Mudiam, O. Issaenko, S. Kumar, B. Karanam, Z. Lin, R. Isaksson Vogel, R. Gavioli, F. Destro, V. Ferretti, R.B.S. Roden, S.R. Khan, J. Med. Chem. 54 (2011) 449-456.
[22] C.B. Patil, S.K. Mahajan, S.A. Katti, ChemInform 41 (2010) i.
[23] J.L. Corbett, R.T. Weavers, Synth. Commun. 38 (2008) 489-498.
[24] L.A. Büldt, O.S. Wenger, Chem. Sci. 8 (2017) 7359-7367.
[25] S.B. Nasir, J.T. Tee, N.A. Rahman, C.F. Chee. In Flavonoids - From Biosynthesis to Human Health, G. C. Justino, Ed., InTech, 2017.
[26] H. Lv, J. Mo, X. Fang, Y.R. Chi, Org. Lett. 13 (2011) 5366-5369.
[27] A. Fuentes, R. Martínez-Palou, H.A. Jiménez-Vázquez, F. Delgado, A. Reyes, J. Tamariz, Monatshefte Für Chem. 136 (2005) 177-192.
[28] A. Palaniappan, R. Udhayakumar, S. Srinivasan, C. Raju, J. Chem. Pharm. Res. 4 (2012) 2385.
[29] S.K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L.C. Mishra, V.K. Bhasin, Med. Chem. Res. 18 (2009) 407-420.
[30] S. Sebti, A. Solhy, R. Tahir, S. Boulaajaj, J.A. Mayoral, J.M. Fraile, A. Kossir, H. Oumimoun, Tetrahedron Lett. 42 (2001) 7953-7955.
[31] M. Rayees Ahmad, V. Girija Sastry, N. Bano, S. Anwar, Arab J. Chem. 9 (2016) S931-S935.
[32] F. Fringuelli, A. Taticchi, The Diels-Alder Reaction: Selected Practical Methods, John Wiley \& Sons, 2002.


[^0]:    * Corresponding author.

    E-mail address: mpagfuentesb@uaemex.mx (A. Fuentes-Benítes).
    https://doi.org/10.1016/j.tetlet.2019.04.027
    0040-4039/© 2019 Elsevier Ltd. All rights reserved.

